
1

Chapter 4.a
MATLAB SPECTRAL ANALYSISMATLAB SPECTRAL ANALYSIS

Using Fourier analysis to determine spectral content of continuous-time signals is

straight-forward, and by now, second-nature. Often the results have been attained

so many times before that the integrations aren’t even required for the task at hand.

For sampled signals, the methods of Fourier can still be used (for a derivation see the

DFT handout), but some precautions must be observed in order for the results to

have any real meaning. If these precautions are not followed, the results obtained

may appear to be valid with the user completely unaware that the output is garbage.

Modeling signals with MATLAB requires representing them as sampled signals.

This is because a computer cannot generate a time or frequency continuum. Instead,

there is a finite displacement between adjacent time or frequency elements. This

displacement can be made extremely small, depending on the precision of the

computer and its application software, but nonetheless there remains an incremental

distance between elements.

Among the considerations which must be pondered in a sampled modeling

system are the sampling period or rate, the time and frequency resolutions, and what

discrete frequency and inverse discrete frequency transforms will deliver. We begin

with the sampling period.

A. SAMPLING PERIOD

For discussion we begin with a simple continuous-time cosine wave of unity

amplitude and frequency, i.e., x(t) = cos(2Bt). Recall that the Nyquist criterion

2

0 0.5 1 1.5 2 2.5 3

-1

0

1

x(
t)

 s
am

pl
ed

 a
t 0

.5
s

0 0.5 1 1.5 2 2.5 3

-1

0

1

x(
t)

 s
am

pl
ed

 a
t 0

.2
s

0 0.5 1 1.5 2 2.5 3

-1

0

1

Time (s)

x(
t)

 s
am

pl
ed

 a
t 0

.8
s

Figure 1Figure 1. Signal sampled at three different rates.

mandates that we sample at a minimum of twice the highest frequency of the signal.

Since the highest (and only) frequency is 1 Hz, the minimum sampling rate fs is 2 Hz.

The sampling period is the inverse of the sampling rate, Ts = 1/fs so that the greatest

sampling period is 0.5 seconds. We are free to set the sampling period at any

duration less than this Nyquist period. The top plot of Figure 1 shows x(t) sampled

at the Nyquist rate and the middle plot shows the same signal sampled at the higher

rate of 5 Hz (oversampled). The bottom plot illustrates undersampling with the

sampling rate being 1.25 Hz. From the Nyquist theorem we know that the signal can

be reconstructed from the top two plots, but not from the bottom one because of

aliasing. This will become apparent in Section C.

If x(t) is comprised by more than one frequency, e.g., 1 and 10 Hz resulting

in x(t) = cos(2Bt) + 0.2 cos(2B(10)t), then the signal must be sampled at a rate at

least as great as 20 Hz.

3

It is obvious from Figure 1 that the higher the sampling rate the more

samples, N, we generate. From the top plot the sampled values are xs = {1, –1, 1,

–1, 1, –1, 1}, (N = 7), from the middle plot {1, 0.3, –0.8, –0.8, 0.3, 1, 0.3, –0.8,

–0.8, 0.3, 1, 0.3, –0.8, –0.8, 0.3, 1}, (N = 16), while the sequence from the bottom

plot is {1, 0.3, –0.8, –0.8}, (N = 4). More samples require more overhead time to

gather and store, and more storage space on the hard drive. Furthermore, more

samples require more time in the CPU to process the data with filtering, frequency

analysis, etc. Since the requirements of Nyquist tell us that the signal can be

reconstructed if we sample at least twice the highest frequency, which generates the

fewest permissible samples, it would seem that this is the preferred sampling rate.

Unfortunately, that may not be the case as shown in the next section.

B. TIME AND FREQUENCY RESOLUTION

It is obvious that the shorter the sampling period (or higher the sampling rate), the

better time resolution)t of the model. To illustrate why this might be important

suppose the waveform of a power generator is being monitored to ensure output

quality. Its normal output is a 1-Hz signal with a constant 1 volt peak amplitude.

Now suppose a bearing is failing which causes a voltage spike 0.4 seconds in duration

in the generator at every revolution at the same rotational location. This induces a

spike at a constant point in its output sine wave. If we are sampling at the Nyquist

rate and the spike occurs during a sample time, the spike will be detected and the

necessary repairs effected before further damage occurs. If instead, the spike occurs

in between samples as shown in Figure 2, it will not be detected from the sampled

signal.

It is apparent from this example that the time resolution is equal to the sample

period, i.e.,)t = Ts. Therefore if a waveform’s duration is less than the sample

period it might not be detected from the sampling. This illustrates that although

sampling at the Nyquist rate gives us the fewest samples and therefore the easiest

processing, the tradeoff is that required time resolution may be forfeited.

4

fmax ' fs. (1)(1)

0 0.5 1 1.5 2 2.5 3

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

x(
t)

 w
ith

 p
er

io
di

c
sp

ik
e

Figure 2Figure 2. Voltage spike occurring between samples.

We now turn our attention to frequency resolution. It is seen that even

though the repetition rate of the spike in this example is less than that of the cosine

wave (contributing a lower frequency), the frequencies which make up the spike are

much higher than those of the cosine wave. However, it is seen that if the spike is

not detected in the time domain it will not be discerned in the frequency domain

either. It would seem obvious that the time resolution and frequency resolution are

linked, and indeed they are.

We know that time and frequency are inversely related so our first guess at

the frequency resolution might be the inverse of the time resolution. And since the

time resolution is equal to the sampling period Ts, its inverse is the sampling rate fs.

A little thought reveals that this is not the frequency resolution but the highest

frequency that can be manifested with the model, i.e.,

The frequency resolution is then fmax divided by the number of frequency cells or

5

)f '
fs

N
'

1
NTs

'
1

N)t
Hz. (2)(2)

(Recall that the number of frequency cells is identical to the number of samples.)

From this equation we see that frequency resolution is affected by two quantities, the

sampling rate or period, and the total number of samples. Although N is dependent

upon)t, it also depends on the length of the sampling interval (which is 3 seconds

in the above example).

Although the frequency domain of the sampled signal indicates a maximum

frequency of fs, this fact contributes a source of confusion because the highest

frequency which can exist from the original signal is half that or fs/2. This apparent

discrepancy can lead the newcomer to discrete frequency analysis to make some

critical errors in evaluating the DFT. With this caution we now discuss spectral

analysis using MATLAB.

C. DISCRETE FREQUENCY AND INVERSE FREQUENCY TRANSFORMS

As discussed in the DFT handout there are two methods to find the Fourier transform

of a sampled signal. The Discrete Fourier Transform (DFT) is derived in the handout

and the other method is the Fast Fourier Transform (FFT) you encountered in a

previous course. The two methods deliver the same results, but the FFT is much

faster and requires fewer computer computational resources. They are both obtained

in MATLAB using the same command, fft. The difference is if the number of sample

points is equal to a power of 2 the FFT is performed whereas the DFT is used

otherwise. For a small number of samples N, it is irrelevant which method is used.

However, for large N the difference in computation time can be significant.

If we find the FFT of the three sampled signals shown in Figure 1 we obtain

generally meaningless results. This is because there are too few sample points for

the FFT to gravitate toward the frequency content (with the possible exception of the

oversampled case with 16 points, try it and see!). The solution is to allow the

sampling interval I to increase from 3 seconds to, say, 30 seconds. With I = 30

6

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

|X
(f

)|

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

Frequency (Hz)

FigureFigure 3 3. FFT magnitudes for three signals from Figure 1. The top

plot is from the Nyquist rate sampled signal, the middle is oversampled

and the bottom is undersampled.

seconds for the three signals of Figure 1 the FFTs were computed using MATLAB and

the magnitude of the results shown in Figure 3.

Some discussion of this figure is warranted. Notice first that the frequency

span of each plot extends to fmax, the sampling frequency. However, since the

maximum input from the signal is fmax/2, only half the plot is relevant; the second

half is only a mirror image of the left half (except for the undersampled case which

we discuss in a moment). In the top plot the sampling frequency is 2 Hz, so that the

only unique input is at 1 Hz and below. So we see the 1 Hz signal plotted at the

limit of the relevant plot. The mirror image continues from that point on, but it is

repeat information. In the middle plot, fmax is 5 so the mirror point is at 2.5 Hz.

Notice the signal magnitude plotted at 1 Hz where it belongs but its image is at 4 Hz.

This pulse does not exist; there is no 4-Hz component. The bottom plot is

undersampled which is forbidden under Nyquist criteria. We see why. The 1-Hz

pulse is present, but its image has been folded back as an alias frequency at 0.25 Hz.

7

0 0.5 1 1.5 2 2.5
0

0.1

0.2

0.3

0.4

0.5

0.6

|X
(f

)|

Frequency (Hz)

Figure 4Figure 4. One Hz signal with only half of FFT plotted.

If you weren’t careful you would interpret the alias frequency as the true output and

the true pulse as the image. So, it is apparent that we never want to undersample,

and for an unmistakable output, we prefer to oversample. For the remaining

examples we will only discuss the oversampled case.

There are two solutions to preventing the image frequency from confusing the

user. Some people plot only the first half of the points. This is shown in Figure 4 for

the oversampled case.

Another method to prevent confusion is to make the FFT output look like the

theoretical output. Recall from theory that the Fourier transform of a sinusoid results

in a pulse at both positive and negative frequencies, in our case ±1 Hz. This can be

displayed by moving the image frequency (in the oversampled case at 4 Hz) to –1 Hz

where it belongs. This is accomplished with the MATLAB command fftshift.

Applying fftshift to the middle plot of Figure 3 results in Figure 5. What fftshift does

is take everything to the right of fs/2, reverse it, and shift it to the left of DC.

8

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
0

0.1

0.2

0.3

0.4

0.5

0.6

|X
(f

)|

Frequency (Hz)

Figure 5Figure 5. FFT with positive and negative frequencies.

A note about using the fft function in MATLAB. The program uses the same

algorithm for computing both the fft and the inverse fft. For this reason it does not

properly scale the output. You will recall from theory that the fft summation must

be divided by N, the number of sample points. MATLAB does not include this

division so you must provide it yourself. Similarly, when executing the inverse fft,

ifft, theory requires that you multiply by N. Again, MATLAB does not perform this

multiplication, so you must provide it in your code.

The FFTs shown above are only the magnitude of X(f). The fft (and Fourier

transform) is complex for real time domain signals. We have not plotted the phase,

only the magnitude using the abs function.

Now let’s take what we’ve learned and see how we can mangle the inverse

FFT. If the inverse operation works properly then we should be able to recover

whatever time domain signal we began the transformations with. Let’s see if we can.

For comparison first we plot the oversampled signal for which the FFTs of

Figures 4 and 5 and the middle plot of Figure 3 were derived. This is shown in

Figure 6. This is the signal that we wish to get back from the inverse FFT.

9

0 0.5 1 1.5 2 2.5 3

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Time (s)

S
am

pl
ed

 x
(t

)

Figure 6Figure 6. Sampled one Hertz signal.

Beginning with the frequency domain signal shown in Figure 5 we find its

inverse FFT. First we find the ifft of the plot just as it is pictured, i.e., the magnitude

of X(f). The result is shown in the top plot of Figure 7. As this does not look like

Figure 6 we decide that we shouldn’t use the magnitude of the FFT in the

calculations but the entire complex FFT. The ifft of that is shown in the bottom part

of Figure 7. It likewise does not look like Figure 6.

 So, we decide that the fftshift might have messed us up. We return to the

X(f) shown in the middle plot of Figure 3. Using this signal to perform the ifft on we

get the time domain signal shown in Figure 8. We see that this is the proper

waveform.

For the ifft we have learned that we cannot use the fftshifted signal. If the

signal is in this form we must again apply fftshift to get it back to the original form.

Also, we know that we must use the complex version of the FFT not just its

magnitude. Otherwise we will not get the proper output signal.

10

0 0.5 1 1.5 2 2.5 3

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Time

iff
t (

X
(f

))

Figure 8Figure 8. Inverse FFT of middle plot of Figure 3.

0 5 10 15 20 25 30
-2

-1

0

1

2

3

Time

iff
t (

|X
(f

)|
)

0 5 10 15 20 25 30
-1

-0.5

0

0.5

1

Time

iff
t (

X
(f

))

Figure 7Figure 7. Inverse FFT of |X(f)| and X(f) from Figure 5.

11

D. DESIGNING LOW-PASS FILTERS

Upon finding the output from the system shown in Figure 8, we almost feel betrayed.

We observed the Nyquist criteria, but the signal of Figure 8 does not look like our

original cosine signal. However, the Nyquist criteria states that we can recover the

original signal. The recovery process is through filtering.

It is obvious from the figure that there are higher frequencies than contained

in the original 1-Hz signal. We therefore infer that we need to low-pass filter the

signal in order to recover the original signal. We wish to use MATLAB and know that

we have several choices of filter types, and we wish to use a butterworth.

Consulting the help function for butter, it asks us to supply two pieces of

information. The first is the order of the filter. The higher the order, the steeper the

transition region of the filter, but the more unstable it is. A good compromise is a

5th order filter. The second piece of information is something called “Wn” and we are

told that it is defined between 0 and 1. We are further told that a 1 value

corresponds to half the sampling frequency. This Wn represents the cutoff frequency

of the filter.

 Thinking back to the above discussions we know that fs/2 is the maximum

frequency that can be represented in the sampled signal. There Wn = 1 corresponds

to the maximum frequency. If we used this value no filtering would occur as all the

frequencies would be allowed to pass. Conversely, if we used Wn = 0 no frequencies

would pass as the cutoff frequency would be below all frequencies of the signal.

For our particular example, fs/2 is 2.5 Hz, which would be represented by Wn

= 1. Our signal is at 1 Hz. To find Wn for 1 Hz we divide by fs/2 to get 1/2.5 = 0.4.

We may want to pad this a bit so we might set Wn = 0.42. We see from the help

function that we will get b and a values from butter using [b,a] = butter(5,0.42).

Now, from help filter, we find that the filter function requires these b and a

values and whatever signal we wish to filter, x. The output is the filtered value as

shown in Figure 9.

We got the results shown in this figure by using the butterworth filter

designed in the easy steps above. One additional step was added to get this

12

0.5 1 2 2.5

-1

-0.8

-0.4

-0.2

0.2

0.4

0.8

1

F
ilt

er
ed

 S
am

pl
ed

 S
ig

na
l

FigureFigure 9 9. Signal of Figure 8 filtered with a low-pass butterworth at

cutoff frequency 1.05 Hz.

waveform. Since we are simulating a real analog system, one that is not sampled,

there will be an infinite number of values to fill in between the sampled values. To

simulate this we add additional points to the sampled waveform (we do not change

the shape of the sampled waveform, just fill in between points). We do this with the

MATLAB command interp (interpolation). In this example we interpolated by

increasing the number of points ten fold.

Also notice in the figure that there are transients at startup, just as in a real

system, and that the waveform has been delayed slightly due to the filtering (just as

in a real system).

13

E. MATLAB FILES

The following MATLAB files were used to create the examples in this Chapter.

% nyq.m

T = 30; % Sampling interval

dt1 = .5; % Sampling period

t1 = 0:dt1:T; % Sample time vecto

x1 = cos(2*pi*t1); % Sampled signal

arrowtop(t1,x1,'filled') % Plot arrows at sample points, my own program-use stem

hold on

t = 0:.0001:3; % Time vector for "continuous" cas

x = cos(2*pi*t);% Continuous signal

subplot(3,1,1)

plot(t,x)

axis([0 3 -1.2 1.2])

%xlabel('Time (s)')

ylabel('x(t) sampled at 0.5s')

subplot(3,1,2)

dt2 = .2;

t2 = 0:dt2:T;

x2 = cos(2*pi*t2);

arrowtop(t2,x2,'filled')

hold on

t = 0:.0001:3;

x = cos(2*pi*t);

plot(t,x)

axis([0 3 -1.2 1.2])

%xlabel('Time (s)')

ylabel('x(t) sampled at 0.2s')

14

subplot(3,1,3)

dt3 = .8;

t3 = 0:dt3:T;

x3 = cos(2*pi*t3);

arrowtop(t3,x3,'filled')

hold on

t = 0:.0001:3;

x = cos(2*pi*t);

plot(t,x)

axis([0 3 -1.2 1.2])

xlabel('Time (s)')

ylabel('x(t) sampled at 0.8s')

%This m file is used to generate Figure 3.

%Note that the m file nyq.m must be run first.

fmax = 1/dt1;

N = length(t1);

df = fmax/(N);

f = 0:N-1;

f = f*df;

y = fft(x1)/N/2;

subplot(3,1,1)

plot(f,abs(y)),grid

axis([0 fmax 0 .6])

fmax = 1/dt2;

N = length(t2);

df = fmax/(N);

f = 0:N-1;

f = f*df;

y = fft(x2)/(N);

subplot(3,1,2)

15

plot(f,abs(y)),grid

axis([0 fmax 0 .6])

ylabel('|X(f)|')

fmax = 1/dt3;

N = length(t3);

df = fmax/(N);

f = 0:N-1;

f = f*df;

y = fft(x3)/(N);

subplot(3,1,3)

plot(f,abs(y)),grid

axis([0 fmax 0 .6])

xlabel('Frequency (Hz)')

%m file for Figure 4

fmax = 1/dt2;

N = length(t2);

df = fmax/(N);

f = 0:N-1;

f = f*df;

y = fft(x2)/(N);

plot(f(1:N/2),abs(y(1:N/2))),grid

axis([0 fmax/2 0 .6])

ylabel('|X(f)|')

xlabel('Frequency (Hz)')

% m file for Figures 5, 7, and 8

fmax = 1/dt2;

N = length(t2);

df = fmax/(N);

f = 0:N-1;

16

f = f*df;

y = fft(x2)/(N);

y = fftshift(y);

f = f - fmax/2;

plot(f,abs(y)),grid

axis([-fmax/2 fmax/2 0 .6])

ylabel('|X(f)|')

xlabel('Frequency (Hz)')

pause

subplot(2,1,1)

x = N*ifft(abs(y));

plot (t2,x)

xlabel('Time')

ylabel('ifft (|X(f)|)')

subplot(2,1,2)

x = N*ifft(y);

plot (t2,x)

xlabel('Time')

ylabel('ifft (X(f))')

pause

close

fmax = 1/dt2;

N = length(t2);

df = fmax/(N);

f = 0:N-1;

f = f*df;

y = fft(x2)/(N);

x = ifft(y) * N;

plot(t2,x)

axis([0 3 -1.2 1.2])

xlabel('Time')

17

ylabel('ifft (X(f))')

% Figures 6 and 9

T = 30;

dt2 = .2;

t2 = 0:dt2:T;

x2 = cos(2*pi*t2);

plot(t2,x2)

axis([0 3 -1.2 1.2])

xlabel('Time (s)')

ylabel('Sampled x(t)')

pause

[b,a] = butter(5,0.42);

Q = 10;

x = interp(x2,Q);

xfilter = filter(b,a,x);

L = length(xfilter);

dt = dt2/Q;

t = 0:dt:T;

plot(t(1:500),xfilter(1:500)),grid

axis([0 3 -1.2 1.2])

xlabel('Time (s)')

ylabel('Filtered Sampled Signal')

